If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-25x-126=0
a = 7; b = -25; c = -126;
Δ = b2-4ac
Δ = -252-4·7·(-126)
Δ = 4153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-\sqrt{4153}}{2*7}=\frac{25-\sqrt{4153}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+\sqrt{4153}}{2*7}=\frac{25+\sqrt{4153}}{14} $
| 0.5*240+8*(240-x)=136 | | 4x+6=14,x | | 90+2x-2+x-5=180 | | 2x^2+9x-7+8/x-2=0 | | X/2-x/2=2/3x-2 | | 2x/x+15=4/5 | | 2x/x+12=4/5 | | 7/2x=4+10x | | 8/56x=48 | | 5x+15=180° | | 11=13-0.01x | | 8x2=6x+9 | | 2x^+23x-25=0 | | 3+x-7=21 | | 3y+4=72y | | 2x-4/5+3=4 | | 25=-4.9t^2 | | 25=-4.9(t²) | | 4-6x/5=2 | | 5x/4+1=6 | | 60/5=k | | 4k^2-14k+6=0 | | 3z+9=5z+2 | | 7x-1=8x-14=180 | | 60+0.2p+p=100 | | 6x-10+3x+10=180 | | 5a−10=3a−4 | | 6c−5=5c−2 | | 1.2p+60=650 | | 5a-10=3a-4 | | H(t)=-4.9t²+9.8t+2 | | x=6-3(3+2x) |